Graph Traversal: Breadth-First Search and Depth-First Search Module 5: Graphs

Overview

We describe the graph traversal algorithms, BFS and DFS (breadth-first and depth-first search), explore their properties and look at problems we can solve with them.

Graph traversal

- Consider a graph, directed or undirected.
- The most basic graph problem is traversing the graph. There are two simple ways of traversing all vertices/edges in a graph in a systematic way: BFS and DFS
- Basic idea: over the course of the traversal the state of a vertex progresses from undiscovered, to discovered, to completely-discovered:
- undiscovered or UNVISITED initially
- discovered and IN-PROGRESS : after it's encountered, but before it's completely explored
- completely explored or ALL-DONE the vertex after we visited all its incident edges
- Graph traversal starts with a single vertex and evaluate its outgoing edges:
- If an edge goes to an UNVISITED vertex: we mark it as IN-PROGRESS and add it to the list of IN-PROGRESS vertices.
- If an edge goes to a completely explored ALL-DONE vertex: we ignore it (we've already been there)
- If an edge goes to an IN-PROGRESS vertex: we ignore it (it's already on the list).
- Depending on how we store the list of in-Progress vertices we get BFS or DFS:
- queue: explore oldest vertex first. The exploration propagates in layers form the starting vertex.
- stack: explore newest vertex first. The exploration goes along a path, and backs up only when new unexplored vertices are not available.
- Analysis: Each edge is visited once (for directed graphs), or twice (undirected graphs - once when exploring each endpoint $) \Rightarrow O(|V|+|E|)$. More on this later.

Breadth-first search (BFS)

- BFS uses a queue to hold the In-PROGRESS vertices (which are the vertices we have seen but are still not done with).
- BFS can compute the following additional information for each vertex v : its parent and its distance from the source
- parent $[v]$: this is the vertex that discovered v first
$-d[v]$: the length of the path from s to v. Initially $d[s]=0$. We'll see that $d[v]$ represents the length of the shortest path from s to v

```
BFS(vertex \(s\) )
    state \([s]=\) IN-PROGRESS
    \(d[s]=0\)
    \(Q\).insertEnd( \(s\) )
    WHILE \(Q\) not empty DO
        \(u=Q\).removeFront()
        FOR each \(v \in \operatorname{adj}[u]\) DO
            IF state \([v]=\) UNVISITED THEN
                state \([v]=\) IN-PROGRESS
                \(d[v]=d[u]+1\)
                parent \([v]=\mathrm{u} / /(\mathrm{u}, \mathrm{v})\) is a tree-edge
            \(Q\).insertEnd \((v)\)
            //ELSE: v is not UNVISITED \(=>(\mathrm{u}, \mathrm{v})\) is non-tree edge
        state \([u]=\) ALL-DONE \(/ /\) we are done exploring vertex \(v\)
```

- Example (for directed graph):

- Note that you can run BFS from an arbitrary vertex in the graph. BFS(s) will reach all vertices that are reachable from (are connected to) source vertex s.
- If graph is not connected: after BFS(s), some vertices in the graph will still be unvisited . To explore the whole graph, we start the traversal at all vertices until the entire graph is explored.

BFS (graph G)

```
for each vertex \(u \in V\)
    IF state \([u]=\) UNVISITED \(: \operatorname{BFS}(u)\)
```


Properties of BFS

- Lemma: On a directed graph, $\operatorname{BFS}(\mathrm{s})$ visits all vertices reachable from s. On an undirected graph, BFS(s) visits all vertices in the connected component (CC) of s.
Proof sketch: Assume by contradiction that there is a vertex v in $\mathrm{CC}(\mathrm{u})$ that is not reached by $\operatorname{BFS}(u)$. Since u, v are in same CC, there must exist a path $v_{0}=u, v_{1}, v_{2}, \ldots, v_{k}, v$ connecting u to v. Let v_{i} be the last vertex on this path that is reached by $\operatorname{BFS}(\mathrm{u})\left(v_{i}\right.$ could be $u)$. When exploring v_{i}, BFS must have explored edge $\left(v_{i}, v_{i+1}\right), \ldots$, leading eventually to v. Contradiction.
- Lemma: BFS(s) runs in $O\left(\left|V_{c}\right|+\left|E_{c}\right|\right)$, where V_{c}, E_{c} are the number of vertices and edges in $\mathrm{CC}(\mathrm{s})$. When run on the entire graph, $\mathrm{BFS}(\mathrm{G})$ runs in $O(|V|+|E|)$ time. Put differently, BFS runs in linear time in the size of the graph.

Proof: It explores every vertex once. Once a vertex is marked, it is not explored again. It traverses each edge (u, v) once (twice, on an undirected graph). Overall, this is $O(|V|+|E|)$.

- Lemma: Let x be a vertex reached in BFS(s). Its distance $d[x]$ represents the the shortest path from s to x in G.
Proof sketch: All vertices v which are one edge away from s are discovered when exploring s and are set with $d[v]=1$, which is correct. Now consider a vertex v whose shortest path from s is two edges, and let u be the intermediate vertex on the shortest path from s to v. Since there is an edge (s, u), vertex u will be discovered from s and set with $d[u]=1$, and then when u is explored, it discovers vertex v and sets $d[v]=2$.
In general, we use induction on the length of the shortest path. Assume inductively that any vertex u whose shortest path consists of $k-1$ edges is set correctly with $d[u]=k-1$. Let v be a vertex whose shortest path from s consists of k edges: $\left\langle s, v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}=v\right\rangle$. When vertex v_{k-1} is explored, it will discover v_{k} and set $d[v]=d\left[v_{k-1}\right]+1$. Note that the shortest path from s to v_{k-1} consists of $k-1$ edges, and by induction hypothesis we have that $d\left[v_{k-1}\right]=k-1$. Then it follows that $d[v]=(k-1)+1=k$.
- Each vertex, except the source vertex s, has a parent; these edges (v, parent $[v]$) define a tree, called the $B F S$-tree. During $\operatorname{BFS}(v)$ each edge in G is classified as either: (1) a tree edge: an edge leading to an UNVISITED vertex; or (2) a non-tree edge: an edge leading to a vertex that's been discovered before (so the vertex is either IN-PROGRESS or ALL-DONE).
- Lemma: For undirected graphs, for any non-tree edge (x, y) in $\operatorname{BFS}(v)$, the level of x and y differ by at most one.

Proof idea: Observe that, at any point in time, the vertices in the queue have distances that differ by at most 1 . Let's say x comes out first from the queue; at this time y must be already marked (because otherwise (x, y) would be a tree edge). Furthermore y has to be in the queue, because, if it wasn't, it means it was already deleted from the queue and we assumed x was first. So y has to be in the queue, and we have $|d(y)-d(x)| \leq 1$ by above observation.

Depth-first search (DFS)

- DFS uses a stack instead of queue to hold discovered (UNVISITED) vertices
- DFS computes the following additional information for each vertex:
$-\operatorname{start}[u]:$ time when a vertex is first visited.
- finish $[u]$: time when all adjacent vertices of u have been visited and v is set as ALL-DONE
- We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead of a QUEUE;
- The standard DFS implementation is recursive:

```
DFS( vERTEX u)
    state[u] = IN-PROGRESS
    start[u] = time
    time = time + 1
    FOR each v\inadj[u] DO
        IF state[v] = UNVISITED THEN
            parent[v]=u
            DFS(v)
    state[u] = ALL-DONE
    finish[u]= time
    time = time + 1
```

- Example:

c)

e)

b)

d)

f)

i)

k)

j)

1)

- Note that you can run DFS from an arbitrary vertex in the graph. DFS(s) will reach all vertices that are reachable from (are connected to) source vertex s.
- If graph is not connected: after DFS(s), some vertices in the graph will still be Unvisited . To explore the whole graph, we start the traversal at all vertices until the entire graph is explored.

DFS (graph G)
for each vertex $u \in V$
IF state $[u]=$ UNVISITED $: \operatorname{DFS}(u)$

Properties of DFS

- On a directed graph, $\operatorname{DFS}(u)$ reaches all vertices reachable from u. On an undirected graph, DFS(u) visits all vertices in $\mathrm{CC}(\mathrm{u})$.
- Analysis: $\operatorname{DFS}(\mathrm{s})$ runs in $O\left(\left|V_{c}\right|+\left|E_{c}\right|\right)$, where V_{c}, E_{c} are the number of vertices and edges in $\mathrm{CC}(\mathrm{s})$ (reachable from s, for directed graphs). When run on the entire graph, $\operatorname{DFS}(\mathrm{G})$ runs in $O(|V|+|E|)$ time. Put differently, DFS runs in linear time in the size of the graph.
- Each vertex, except the source vertex s, has a parent; these edges ($v, \operatorname{parent}[v]$) define a tree, called the DFS-tree.
- Nesting of descendants: If u is a descendent of v in the DFS-tree then $d[v]<d[u]<f[u]<$ $f[v]$. And, it can be shown that this is true the other way around as well: If $d[v]<d[u]<$ $f[u]<f[v]$ then u is descendent of v in DFS-tree.

