The Longest Common Subsequence (LCS)

Biological applications work with DNA sequences. A strand of DNA consists of a string of molecules
which are one of four possible bases: adenine (A), guanine (G), cytosine (C) and thymine (T). Thus
DNA sequences can be expressed as arrays or strings over four symbols, A, C, G, T. Biologists want
to compare how “close” are two DNA strands. One of the ways proposed to model closeness is to
compute the longest common subsequence (LCS) of two DNA strands.

The LCS problem: Suppose we have two sequences (arrays) X[1..n] and Y[1..m], where each
element is one of the four bases A, C,G,T.

e We say that another sequence Z[1..k| is a subsequence of X if there exists a strictly increasing
sequence of indices i3 < i2 < i3 < .. < i such that we have X[i;] = Z[1], X[is] =
Z12], ..., Xix] = Z[k].

For example, [A,C,D,A] (il = 1,i2 = 3,i3 = 5,i4 = 6) and [A,B,B] (i1 = 1,i2 = 2,i3 = 4)
are subsequences of X = [A, B,C, B, D, A, B|.

e We say that Z is a common subsequence (of X,Y') if Z is a subsequence of both X and Y.

Given two sequences X and Y of size n and m respectively, come up with an algorithm that finds
their longest common subsequence (LCS) !.

Work through the questions below to come up with a DP solution for this problem.

Example: Let X = [A,B,C,B,D,A,B|, Y =[B,D,C, A, B, A].

1. List some common subsequences of X and Y of length 2 and 3. Can you find a common
subsequence of length 47 How about 57

2. Let’s start with a simpler problem: How might you write an algorithm to check if an array is
a subsequence of another array ? How long?

//return True if X is a subsequence of Y, False otherwise
isSubsequence(array X, array Y)

L Also on Leetcode 1143

Algorithms: csci2200 Laura Toma, Bowdoin College
3. Consider a brute-force algorithm for finding LC'S(X,Y). For example you could enumerate
all possibilities (how many possibilities are there)? You don’t need to write this in details,

just sketch the idea and pencil its running time.

4. Optimal structure: To describe optimal substructure we introduce the following notation:

Prefixes: For any sequence X[l..n] let X; denote the sequence consisting of the first ¢
elements of X, called the i-prefix: X; = X[1..4].

When we think about optimal substructure we always start with an optimal solution. Let
Z[1..k] = Zi be the LCS of X,Y. Let’s assume we know Zj, and let’s express the optimal
substructure of the problem by comparing the last elements of X and Y and Z; and reason
about Zj_.

e Case 1: If the last elements in X and Y are equal, X [n] == Y[m]: Is the following claim
True or False? And why?

Claim: If X[n]| == Y[m] the last element of Z must be equal to the last element of X
and Y, Z[k] = X[n] = Y[m].
Your answer:

What can you say about the remaining part of Z, namely Z;_ 17 Express it recursively
in terms of X,,_1 and Y,,_1:

Your answer: Zi_1 = LCS(........ TR)

e Case 2: If the last elements of X and Y are not equal, X[n| # Y [m], what can you say
about the last element of Z,7

Your answer:

(a) Case 2 (a): If X[n] # Y[m] and assuming someone told us that Z[k] # X[n|: What
can you say about Z; in this case? Express Zj recursively.

Your answer: Zj = LCS(....... e)

Algorithms: csci2200 Laura Toma, Bowdoin College

(b) Case 2 (b): If X[n] # Y[m] and assuming someone told us that Z[k] # Y [m]: What
can you say about Zj in this case? Express Zj recursively.

Your answer: Zy = LCS(....... e)

In summary, if X[n] # Y[m] and if someone told us if Zj uses X[n] or Y[m], we knew how
to recurse. But noone tells us what the last letter of Z is (or is not). We got to try all cases
that could happen and pick the best.

5. We are now ready to write the recursive algorithm for LCS. As always, we start by computing
the length of the LCS of X,Y. Then we’ll extend the solution to compute not only the length,
but the actual LCS.

Our subproblem: c(i,j) returns the length of the LCS of X; and Yj.

To find the LCS of X and Y we’ll want to call ¢(n, m).
Start by writing the base case:
c(i,0) =?

C(Ov.]) =7

6. If X[i] == Y[j]: Express c(i,j) recursively.

C(iaj) =

7. If X[i] # Y[j]: Express c(i,j) recursively.

C(Zaj) =

8. Describe a DP algorithm (top-down, recursive) that c(z, 7).

Algorithms: csci2200 Laura Toma, Bowdoin College

9. How long does it take to compute ¢(n, m) with DP?

10. Consider the following example:
X=[A,B,C,B,D,A,B], Y =[B,D,C,A,B,A]
Draw the table and show how it’s filled when calling your dynamic programming function to
compute ¢(7,6).

11. How would you extend your algorithm above to compute the LCS not just the length?

12. When you are done, step through the Python notebook to check your answer. Add code to
compute the actual LCS of X, Y (not just the length).

