
PRIM’s MST algorithm

• Start with an arbitrary vertex r. Grow MST by repeatedly adding the smallest edge connecting
a vertex in the tree with a vertex not in the tree

• To find the smallest edge we use a priority queue containing the vertices not in the tree yet:

– The key/priority d[v] of a vertex v is the weight of the smallest edge connecting v to the
tree (implementation note: the priority of a vertex will be stored in an array d[v] and
also in the priority queue (v, d[v]); in order to be able to decrease the prioriy of a vertex
we store a pointer to v’s location in the priority queue)

– For each vertex v we store the edge that connects it to the tree; we call the other vertex
of this edge by pred(v)

PRIM(G)

1 // initialize
2 Pick arbitrary vertex r and set d[r] = 0, PQ.Insert(r, 0), pred(r) = NULL
3 For each vertex u ∈ V (u 6= r): d[u] =∞, PQ.Insert(u,∞)

4 while PQ not empty
5 u = PQ.Delete-min() // u is vertex closest to the tree
6 For each adjacent edge (u, v)
7 IF v in PQ and wuv < d[v]
8 PQ.Decrease-Key(v, wuv)
9 pred[v] = u

10 Output the edges (u, pred(u)) as the MST.

Analysis: O(|E| lg |V |)

Kruskal’s MST algorithm

KRUSKAL(G)

1 // initialize
2 For each vertex v ∈ V : Make-Set(v)
3 Sort edges of E in increasing order by weight

4 for each edge e = (u, v) in order of weight
5 if Find-Set(u) 6= Find-Set(v)
6 output edge e as part of MST
7 Union-Set(u, v)

Analysis: O(|E| lg |V |)

1

