
DP Example 2: Rod cutting
Module 4: techniques

The problem: We are given a long steel rod and we need to cut it into shorter rods which we
then sell. Making each cut is free and all rod lengths are always integers. Assume we are given,
for each i = 1, 2, 3, ..., the price pi (in dollars) that we can sell a rod of length i. Goal: Given a
rod of length n inches and a table of prices pi for i = 1, 2, 3, ..., n, determine the maximal revenue
obtainable by cutting up the rod and selling the pieces.

Example: Find the maximal revenue for a rod of length n = 10 obtainable with the prices
below.

length 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 19 17 17 20 24 30

First steps, towards understanding the problem: Draw all possible ways a rod of length
n can be cut, for n = 1, 2, 3, 4. Write down the revenue of the cut in each case.

n = 1

n = 2

n = 3

n = 4

Question: How many different cuts for a rod of length n?

Answer: You have the choice of n−1 cuts: you can cut at distance 1, 2, ..., n−1 from the beginning
of the rod. Can view each cut as a binary variable, with values 0 (no cut) or 1 (cut). There are
2n−1 different combinations. Each one corresponds to a different way to cut the rod (but note that
different cuts might result in the same set of rods, and thus have the same cost).

1

Algorithms: csci2200 Laura Toma, Bowdoin College

Choice of subproblem. This problem has one parameter, which is the size of the rod. When
we make a cut, we get segments of smaller sizes. We denote by rn or r(n) the maximal revenue
obtainable by cutting up a rod of length n.

Optimal substructure: Assume someone told us that the first (left-most) cut in the optimal
solution was at distance i from the beginning; thus the first piece has length i.
Claim: Then it has to be that r(n) = pi + r(n− i). In other words, the optimal revenue consists of
the price of that first piece pi plus the optimal revenue obtainable for the remaining rod. Basically
this says that if we want maximal revenue for a rod of length n, once we determined a cut, we want
maximal revenue for the remaining piece.
Proof: By contradiction.. Assume r(n) = pi +x. If x < r(n− i) then we found a better revenue for
a rod of length n− i which is not possible, because r(n− i) represents the optimal cost obtainable
from a rod of length n− i.

Recursive formulation: Once we established that the problem has optimal substructure (the
optimal solution consists of optimal solutions to sub-problems), we can use it in the following way:

If we knew where the first (leftmost) cut was, we’d recurse from there. But we don’t know
where the first cut is, so, so we have to consider all options: the first cut can be at distance 1 from
the start, or at distance 2, or 3,, or n (in this case, there is no cut). The maximal revenue is
the largest revenue obtainable by one of these choices. Thus we get

rn = max{p1 + r(n− 1), p2 + r(n− 2),, pi + r(n− i), ..., pn−1 + r(1), pn}

//Note: the price array p[1..n] is a global variable
//Output: returns the maximal revenue obtainable by cutting up a rod of length x.
maxrev(x)

if (x ≤ 0): return 0

For i = 1 to x: compute p[i] + maxrev(x− i) and keep track of max

RETURN this max

Correctness: It tries all possibilities for first cut and recurses on the rest (correct bec. of optimal
substructure).

Analysis: We can write a recurrence for the running time T (n) of the recursive algorithm
maxrev(n) and show that it is exponential T (n) = Ω(2n/2).

(to do)

2

Algorithms: csci2200 Laura Toma, Bowdoin College

Overlapping subproblems: Why is maxrev(n) inneficient? Draw the recursion tree for n = 4.
How many different sub-problems are there in total, and can a problem be solved multiple times?

Rod cutting: DP solution with memo-ized recursion

We create a table of size [0..n], where table[i] will store the result of maxrev(i). We initialize
all entries in the table as 0. We call maxrevDP (n) and return the result.

//Note: the prices p[1..n] and the table table[1..n] are global variables
//Output: returns the maximal revenue obtainable by cutting up a rod of length x.
maxrevDP(x)

if (x ≤ 0): return 0

IF table[x] 6= 0: RETURN table[x]

For i = 1 to x: compute p[i] + maxrevDP(x− i) and keep track of max

table[x] = max

RETURN table[x]

Running time for maxrevDP (n) : Θ(n2)

Rod cutting: iterative DP solution

// Input: the prices p[1..n]
// Output: returns the maximal revenue obtainable by cutting up a rod of length n.
maxrevDP iterative()

create table[0..n] and initialize table[i] = 0 for all i

for (k = 1; k ≤ n; k + +)

for (i = 1; i ≤ k; i + +)

set table[k] = max{table[k], p[i] + table[k − i]}

RETURN table[n]

Running time for maxrevDP iterative(n) : Θ(n2)

3

Algorithms: csci2200 Laura Toma, Bowdoin College

From optimal revenue to the cuts

• Computing full solution (without storing additional information while filling the table):

Input: The table table[0..n] as computed above, where table[i] stores the maxrev obtainable
from a rod of length i. And the prices p[1..n].
Output: the set of cuts corresponding to table[n]

curLength = n
while (curLength > 1) do:

for (i = 1; i ≤ curLength; i + +)

//is the value table[curLength] achieved via a first cut of length i ?

if table[curLength] == (p[i] + table[curLength− i]):

output that a cut of length i was made

curLength = curLength− i

Running time: Θ(n2), no extra space

• Computing full solution (with storing additional information while filling the table):

In addition to table[0...n] we use an array firstcut[0..n] where firstcut[i] will store the first
cut in maxrev(i). We can extend the algorithm for computing maxrevDP(x) (either recursive
or iterative) to also compute firstcut[x]: basically if the maximum revenue for x is achieved
with the first cut being of length k, we’ll store that firstcut[x] = k.

Input: The table table[0..n] as computed above, where table[i] stores the maxrev obtain-
able from a rod of length i. And firstcut[0..n] where firstcut[i] will store the first cut in
maxrev(i).
Output: the set of cuts corresponding to table[n]

curLength = n
while (curLength > 1) do:

output a cut of length firstcut[curLength]

curLength = curLength− firstcut[curLength]

Running time: Θ(n), with Θ(n) extra space for firstcut[0..n]

4

