
Assignment 11
Algorithms, Spring 2023

Honor code: Work on this assignment alone or with one partner. Between different teams,
collaboration is at level 1 [verbal collaboration only]. There are lots of resources online, such as
animations, visualizations, practice problems, videos, and solutions— which you are encouraged to
explore to deepen your understanding. However, you must be careful not to search for the specific
problems in the assignment with the intent of getting hints for the solution. Searching for the
assignment problems on the internet violates academic honesty for this class.

1. Most reliable path: We are given a directed graph G = (V,E) on which each edge (u, v)
has an associated value r(u, v), which is a real number in the range [0, 1] that represents the
reliability of a communication channel from vertex u to vertex v. We interpret r(u, v) as the
probability tht the channel from u to v will not fail, and we assume that these probabilities
are independent. Give an efficient algorithm to find the most reliable path between two given
vertices.

We expect: Pseudocode, justification, analysis.

2. Max-bandwidth path: Suppose you are given a diagram of a telephone network, which is a
graph G whose vertices represent switching centers, and whose edges represent communication
links between the two centers. The edges are marked by their bandwidth. The bandwidth
of a path is the minimum bandwidth along the path. Give an algorithm that, given two
switching centers a and b, will output a maximum bandwidth path between a and b.

We expect: Pseudocode, justification, analysis.

3. Computing all-pair shortest paths with dynamic programming: You are given a
directed graph G = (V,E) with positive or negative edge weights but no negative cycles.
Denote the number of vertices |V | = n. The goal is to find the length of the shortest paths
from vi to vj , for all vertices 1 ≤ i, j ≤ n.

One way to do this is to run an SSSP algorithm n times, once with each vertex vi as source. An
improved algorithm was proposed by Floyd and Warshall, and is known as the Floyd-Warshall
algorithm. In this problem you will reconstruct it.

The idea is to use dynamic programming, with the following choice of subproblem:

shpath(i, j, k): returns the length of the shortest possible path (if one exists) from vi to vj
among all paths that use only vertices from the set {v1, v2, ..., vk} as intermediate vertices
along the way.

Given this subproblem, our goal is to compute the shortest path from every vi to every vj
allowing any vertex along the way, i.e. shpath(i, j, n).
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Recursive definition: Clearly if we don’t allow any intermediate vertices, then shpath(i, j, 0)
will be the weight of the edge (vi, vj) if this edges exists, and ∞ otherwise. For k ≥ 1:
shpath(i, j, k) could be either:

• a path that does not go through vertex vk (and therefore uses only vertices in the set
{v1, v2, ...vk−1})
• a path that goes through vertex vk: vi  vk  vj . Since a shortest path cannot contain

a vertex more than once, it follows that the paths vi  vk and vk  vj only go through
vertices {v1, v2, ...vk−1}.

(a) Optimal substructure: What can you say about the subpath vi  vk and vk  vj ?

(b) Recursive definition: Express shpath(i, j, k) recursively in terms of k − 1 and don’t
forget the basecase.

(c) Denote by d[1..n][1..n] a 2-dimensional array such that d[i][j] represents the length of
the shortest path from vi to vj . Using the recursive definition above, give pseudocode
for an iterative algorithm to compute d[i][j] for all 1 ≤ i, j ≤ n. What is the runnig
time?

We expect: Pseudocode, analysis.
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