
Assignment 7

Algorithms, Spring 2023

Honor code: Work on this assignment alone or with one partner. Between different teams,
collaboration is at level 1 [verbal collaboration only]. There are lots of resources online, such as
animations, visualizations, practice problems, videos, and solutions— which you are encouraged to
explore to deepen your understanding. However, you must be careful not to search for the specific
problems in the assignment with the intent of getting hints for the solution. Searching for the
assignment problems on the internet violates academic honesty for this class.

Load balancing:1 You have been hired to design algorithms for optimizing system performance.
Your input is an array J [1..n] where J [i] or Ji represents the running time of job i; jobs do not
have specific start and end times, but they can be started at any time (this is a different scenario
than in the interval scheduling /activity selection problem). The running times are integers.

In this problem you wil design and implement an algorithm for determining whether there is a
subset S in J such that the running time of the elements in S sum up precisely to the same amount
as the sum of the elements not in S; more formally,

∑
Ji∈S Ji =

∑
Ji∈J−S Ji. The algorithm should

run in time O(n ·K), where K is the sum of the running times of the n jobs.
Examples:

vals = []

True, subset=[]

vals = [1]

False

vals = [1,2,1]

True, subset=[1,1]

vals=[1, 2, 3, 4]

False

vals = [1, 5, 11, 5]

True, subset=[1, 5, 5]

1Leetcode #416: Given a non-empty array containing only positive integers, find if the array can be partitioned
into two subsets such that the sum of elements in both subsets is equal.

1

Algorithms: csci2200 Laura Toma, Bowdoin College

To solve this problem, you will answer all the questions below in a Python notebook. Use as
examples the notebooks for the rod cutting and the robber problems, which you can download from
the class website.

1. Recursive: Your first task is to come up with a general recursive solution for this problem
(without dynamic programming).

Your recursive function shoud be called subsetSum, and should return a boolean.

describe its parameter and return value

def subsetSum(vals,)

Provide a wrapper function, called equalSubset, which will call your recursive function sub-
setSum with the correct parameters in order to answer the question on array vals.

PARAMETER vals: an array of values, assume all values are positive

integers RETURN: true if the array can be partitioned into two

subsets such that the sum of the elements in both subsets is equal

False otherwise

def equalSubset(vals):

#...

#call subsetSum(vals, ...)

Once both functions are implemented, you should be able to test various arrays like so:

vals1=[1,5,11, 5]

vals2=[1, 2, 3, 5]

vals3=[1, 1, 1, 1]

equalSubset(vals1)

True

equalSubset(vals2)

False

equalSubset(vals3)

True

We will run and test your code with the following function:

PARAMETER myFun is a function that takes an array as arg and returns True of False

def testIt(myFun):

vals = [

[[1,5,11, 5], True],

[[1, 2, 3, 5], False],

[[1, 1, 1, 1], True],

[[1, 1, 2], True],

[[], True],

[[1], False],

2

Algorithms: csci2200 Laura Toma, Bowdoin College

[[1,2], False],

[[1,2,3,4,5,6,7,8,9,10, 45], True],

[[1,2,3,4,5,6,7,8,9,10, 40], False],

]

failed = 0

for v in vals:

print("testing ", myFun, " on ", v[0])

res = myFun(v[0])

if res == v[1]:

print("Returns ", res, ", should be ", v[1], ". Passed.")

else:

failed = failed +1

print("Returns ", res, ", should be ", v[1], ". Failed.")

ntests = len(vals)

passed = ntests-failed

print("Testing done. ", passed, " passed, ", failed, " failed.")

When I run testIt(equalSubset) on my implementation of equalSubset, I get the following:

testing <function equalSubset at 0x11809a820> on [1, 5, 11, 5]

Returns True , should be True . Passed.

testing <function equalSubset at 0x11809a820> on [1, 2, 3, 5]

Returns False , should be False . Passed.

testing <function equalSubset at 0x11809a820> on [1, 1, 1, 1]

Returns True , should be True . Passed.

testing <function equalSubset at 0x11809a820> on [1, 1, 2]

Returns True , should be True . Passed.

testing <function equalSubset at 0x11809a820> on []

Returns True , should be True . Passed.

testing <function equalSubset at 0x11809a820> on [1]

Returns False , should be False . Passed.

testing <function equalSubset at 0x11809a820> on [1, 2]

Returns False , should be False . Passed.

testing <function equalSubset at 0x11809a820> on [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 45]

Returns True , should be True . Passed.

testing <function equalSubset at 0x11809a820> on [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 40]

Returns False , should be False . Passed.

Testing done. 9 passed, 0 failed.

What is the worst-case running time on an array of size n? No need of proof, just the answer
is sufficient.

3

Algorithms: csci2200 Laura Toma, Bowdoin College

2. Memoized DP: Your second task is to memo-ize your recursive solution from part (1).

Your recursive memo-ized function shoud be called subsetSumDP memoization, and should
return a boolean.

describe its parameter and return value

def subsetSumDP_memoization(vals, table,)

Provide a wrapper function, called equalSubsetDP memoization, which will call your recur-
sive function subsetSumDP memoization with the correct parameters in order to answer the
question on array vals.

PARAMETER vals: an array of values, assume all values are positive

integers RETURN: true if the array can be partitioned into two

subsets such that the sum of the elements in both subsets is equal

False otherwise

def equalSubsetDP_memoization(vals):

#...

#create a table and initialize it

#call subsetSum(vals, table, ...)

Once both functions are implemented, you should be able to test various arrays like so:

vals1=[1,5,11, 5]

vals2=[1, 2, 3, 5]

vals3=[1, 1, 1, 1]

equalSubsetDP_memoization(vals1)

True

equalSubsetDP_memoization(vals2)

False

testIt(equalSubsetDP_memoization)

testing <function equalSubsetDP_memoization at 0x1180ad430> on [1, 5, 11, 5]

Returns True , should be True . Passed.

testing <function equalSubsetDP_memoization at 0x1180ad430> on [1, 2, 3, 5]

The jobs cannot balance because the total is odd

Returns False , should be False . Passed.

testing <function equalSubsetDP_memoization at 0x1180ad430> on [1, 1, 1, 1]

Returns True , should be True . Passed.

testing <function equalSubsetDP_memoization at 0x1180ad430> on [1, 1, 2]

Returns True , should be True . Passed.

testing <function equalSubsetDP_memoization at 0x1180ad430> on []

Returns True , should be True . Passed.

testing <function equalSubsetDP_memoization at 0x1180ad430> on [1]

The jobs cannot balance because the total is odd

4

Algorithms: csci2200 Laura Toma, Bowdoin College

Returns False , should be False . Passed.

testing <function equalSubsetDP_memoization at 0x1180ad430> on [1, 2]

The jobs cannot balance because the total is odd

Returns False , should be False . Passed.

testing <function equalSubsetDP_memoization at 0x1180ad430> on [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 45]

Returns True , should be True . Passed.

testing <function equalSubsetDP_memoization at 0x1180ad430> on [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 40]

The jobs cannot balance because the total is odd

Returns False , should be False . Passed.

Testing done. 9 passed, 0 failed.

3. Extra credit: Iterative solution If you want to take this one step further, you can come
up with an iterative solution that avoids recursion alltogether:

PARAMETER vals: an array of values, assume all values are positive

integers RETURN: true if the array can be partitioned into two

subsets such that the sum of the elements in both subsets is equal

def equalSubsetDP_iterative(vals): create the table fill it in the

right order

Once done, you can test it the same way:

testIt(equalSubsetDP_iterative)

4. Empirical evaluation: The code for the empirical evaluation is provided, and if you write
the functions following the guidelines it will work as is:

5. Full solution: Finally, you will extend your solution for part (2) to find and print the subset.

PARAMETER vals: an array of values, assume all values are positive

integers

#RETURN: true if the array can be partitioned into two

subsets such that the sum of the elements in both subsets is equal

def equalSubsetDP_memoization_withSubset(vals):

#

#as before, create a table

canbalance = #call subsetSumDP_memoization(vals, table, ...)

if canbalance:

subset = #call a function that returns the subset

print("subset:", subset)

return canbalance

Once implemented, you could test it like so:

5

Algorithms: csci2200 Laura Toma, Bowdoin College

vals1=[1,5,11,5]

equalSubsetDP_memoization_withSubset(vals1)

[1, 5, 11, 5]

The total value is: 22

subset: [5, 5, 1]

Out[35]:

True

Note: For this assignment you will turn in only the notebook, nothing else. Please submit on
Canvas.

Evaluation

The assignment will be evaluated along several criteria:

1. Correctness: Is your solution correct?

2. Justification: Is your answer justified?

3. Style: Does it look professional and neat? Is the explanation written carefully in complete
sentences, and well-organized logic? Is it easily human-readable? Is it easy to understand?

• Assignments should be typed. Feel free to annotate the pdf to add figures and formulas
which are too time-consuming to type.

• Write each problem on a separate page or leave plenty of space between problems so
that we can write comments.

• Try to put yourself in the position of the reader. If you hadn’t been thinking of this
problem for 3 hours, would your answers make sense to you?

• Try to finish the assignment early, then step away for a day or two, and then come back
to it and read it again. Chances are you’ll find something you can write more clearly.

• Look at posted solutions for style advice (if solutions are not posted, ask).

6

