
Week 12: Lab
Module: Graphs

Collaboration level 0 (no restrictions). Open notes.

1. Consider the graph below:

(a) What are all the strongly connected components?

(b) Perform DFS on the graph above starting from vertex A. Assume that the adjacency lists
are ordered in alphabetical order. As you go, label each vertex with the start and finish time.
Draw the DFS-tree and highlight the tree edges on the graph.

(c) Perform BFS on the graph above starting from vertex A. Again, assume the adjacency
lists are ordered in alphabetical order. Draw the BFS-tree and highlight the tree edges on
the graph.

2. Consider the graph below:

(a) Without using any specific algorithm, come up with a topological order for the graph.
How many different orders can you come up with?

(b) Run DFS on the whole graph starting at vertex C, and consider the edges in the adjacency
lists in alphabetical order. Recall that when you run DFS on the graph, if it stops but has
not yet explored the whoole graph, it will start again at the next unvisited vertex.

• What do you get when you order the vertices by ascending start time?

• What do you get when you order the vertices by descending finish time?
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(c) Now run DFS starting at vertex C, but consider the edges in the adjacency lists in in
reverse alphabetical order.

• What do you get when you order the vertices by ascending start time?

• What do you get when you order the vertices by descending finish time?

3. Explain why the following algorithmis not correct (i.e. the order produced is not a valid
topological order):

Algorithm to order vertices topologically: Run BFS, and sort vertices by increasing distance
to their respective sources.

Note: To prove that a certain algorithm does not work, it is sufficient to show a counter-
example.

4. Shortest paths on DAGs: Consider a directed acyclic graph G. Unlike the problems so
far, in which we considered that the edges are “equal” and we counted the weight of a path
as the numbr of edges on the path, in this problem we’ll assume that the graph is weighted.
What that means is that each edge (u, v) has a weight which we denote by wuv. The weight
represents the cost of traversing that edge (for e.g. the weight could be the distance beween
the vertices). The weight of a path in a weighted graph is defined as the sum of the weights
of the edges alog the path.

So: given a weighted DAG and two arbitrary vertices u and v, the goal is to compute the
shortest path from u to v. Note that if the graph was not weighted or if all edges weights
were equal, we could simply run BFS form u; but BFS does not guarantee shortest paths
when there are weights.

(a) Explore an algorithm for finding the shortest path from u to v. You can assume, for
simplicity, that u is a vertex without any incoming edges.

Hint: Argue that shortest paths have optimal substructure, choose a subproblem, express the
problem recursively and from here go to a recursive dynamic programming solution.

(b) Run the algorithm from part (a) on the graph above; show how the recursion propagates,
and how the shortest path from u is computed for each vertex. Consider how you’d write an
algorithm to compute the shortest path from u to v without using recursion.

5. Longest simple paths don’t have optimal substructure: Consider a directed graph G,
and assume that instead of shortest paths we want to compute longest paths. Longest paths
are defined in the natural way, i.e. the longest path from u to v is the path of maximum
weight among all possible paths from u to v. Note that if the graph contains a positive cycle,
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then longest paths are not well defined (for the same reason that shortest paths are not well
defined when the graph has a negative cycle). So what we mean is the longest simple path,
(a path is called simple if it contains no vertex more than once).

Show that the the longest simple path problem does not have optimal substructure by coming
up with a small graph that provides a counterexample.

Note: Finding longest (simple) paths is a classical hard problem, and it is known to be
NP-complete.
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