Week 3: Lab

Collaboration level 0 (no restrictions). Open notes.

1. Consider the linear-time merge algorithm discussed in the notes and a possible implementation below. How many element comparisons will the standard merge function take to merge the following left and right lists ?
left $=[1,3,4,5,6,7,8]$, right $=[1,5,9,11,12,16]$

Merge(left, right)

```
result = []
i=0
j=0
while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i = i+1
        else:
            result.append(right[j])
            j = j+1
        # add any left overs
        while i < len(left):
            result.append(left[i])
            i = i+1
    while j < len(right):
        result.append(right[j])
        j = j+1
        return result
```

A 8
B 9
C 10
D 13

Find a $\Theta()$ bound for the following recurrences using iteration.
What we expect: show the process: the first $O(1)$ steps of your iteration leading to the general formula, the recursion depth, and the final $\Theta()$ bound for $T(n)$. Do not write your answers on this page because there isn't enough space. Use plenty of space for each problem and show your work.
2. $T(n)=T(n / 2)+\Theta(1)($ assume $T(1)=1)$.
3. $T(n)=T(2 n / 3)+\Theta(1)$ (assume $T(i)=1$ for $i=1,2)$.
4. $T(n)=T(n-1)+\Theta(1)$ (assume $T(1)=1)$.
5. $T(n)=T(n-2)+\Theta(1)($ assume $T(i)=1$ for $i=1,2)$.
6. $T(n)=T(n / 2)+\Theta(n)($ assume $T(1)=1)$.
7. $T(n)=T(n / 3)+\Theta(n)($ assume $T(i)=1$ for $i<3)$.
8. $T(n)=5 T(n / 5)+\Theta(n)$ (assume $T(i)=1$ for $i<5)$.
9. $T(n)=T(n-1)+2 n-3$, with $(T(1)=1$.
(Hint: you can write this in a simpler form as $T(n)=T(n-1)+\Theta(n)$.)
10. $T(n)=T(\sqrt{n})+1$ (What is the base case here?)
11. $T(n)=7 T(n / 2)+\Theta\left(n^{3}\right)($ assume $T(1)=1)$.
12. $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$ (assume $\left.T(1)=1\right)$.
13. $T(n)=4 T(n / 3)+2 n-1$, with $T(1)=T(2)=1$
(Hint: You can write this in a simpler form as $T(n)=4 T(n / 3)+\Theta(n)$).
14. $T(n)=3 T(n / 2)+\Theta\left(n^{2}\right)$, assume $T(1)=1$.
15. $T(n)=2 T(n-1)+\Theta(1)$, assume $T(1)=1$.
16. Based on all examples seen so far, list recurrences that solve to:
(a) $\Theta(\lg n)$
(b) $\Theta(n)$
(c) $\Theta(n \lg n)$
(d) $\Theta\left(n^{2}\right)$
(e) exponenital

For each category, enumerate all recurrences seen so far that fall into that category, and add at last one new one.
17. Consider the following algorithm to compute n !: :

Mystery (n):

- //Input: a nonnegative integer n
- //Output: the value of n !
- if $\mathrm{n}==0$: return 1
- else: return $n \times \operatorname{Mystery}(n-1)$

Analyze the running time of $\operatorname{Mystery}(n)$ (i.e. write a recurrence for its running time and find its $\Theta())$.
18. For the algorithm below, give its runtime recurrence and its order of growth.

AlgorithmC(n):

- //We don't know what this algorithm does.
- Do something that takes $O(1)$
- AlgorithmC $(n / 3)$
- Do something that takes $O(n)$
- AlgorithmC $(n / 3)$

Optional

Based on your intuition from working through the previous examples, what is a $\Theta()$ for $T(n)$ in the following recurrences?

1. $T(n)=T(n / 3)+\Theta(1)($ assume $T(i)=1$ for $i=1,2)$.
2. $T(n)=T(n / 10)+\Theta(1)$ (assume $T(i)=1$ for $i<10)$.
3. $T(n)=T(99 n / 100)+\Theta(1)$ (assume $T(i)=1$ for $i<100)$.
4. $T(n)=T(n-3)+\Theta(1)$ (assume $T(i)=1$ for $i=1,2,3)$.
5. $T(n)=T(n-2)+\Theta(n)$ (assume $T(i)=1$ for $i=1,2)$.
6. (challenge) $T(n)=T(n / 3)+T(2 n / 3)+\Theta(n)$ (cannot iterate; only guess the solution)
7. (challenge) $T(n)=T(n / 3)+T(n / 4)+\Theta(n)$ (cannot iterate; only guess the solution)
8. (challenge) $T(n)=T(n / 2)+T(n / 4)+T(n / 10)+\Theta(n)$ (only guess the solution)

Partial Answers

- B (9 comparisons)
- $T(n)=T(n / 2)+\Theta(1): \Theta(\lg n)$.
- $T(n)=T(n / 3)+\Theta(1)($ assume $T(i)=1$ for $i=1,2): ~ \Theta(\lg n)$
- $T(n)=T(n / 10)+\Theta(1)($ assume $T(i)=1$ for $i<10): ~ \Theta(\lg n)$
- $T(n)=T(2 n / 3)+\Theta(1)($ assume $T(i)=1$ for $i=1,2): ~ \Theta(\lg n)$
- $T(n)=T(n-1)+\Theta(1): \Theta(n)$
- $T(n)=T(n-2)+\Theta(1)($ assume $T(i)=1$ for $i=1,2): \Theta(n)$
- $T(n)=T(n-3)+\Theta(1)($ assume $T(i)=1$ for $i=1,2,3): \Theta(n)$
- $T(n)=T(n / 2)+\Theta(n): \Theta(n)$
- $T(n)=T(n / 3)+\Theta(n)($ assume $T(i)=1$ for $i<3): \Theta(n)$
- $T(n)=3 T(n / 3)+\Theta(n)($ assume $T(i)=1$ for $i<3): ~ \Theta(n \lg n)$
- $T(n)=5 T(n / 5)+\Theta(n)($ assume $T(i)=1$ for $i<5): ~ \Theta(n \lg n)$
- $T(n)=T(n-1)+\Theta(n): \Theta\left(n^{2}\right)$
- $T(n)=T(n-2)+\Theta(n)($ assume $T(i)=1$ for $i=1,2): \Theta\left(n^{2}\right)$
- $T(n)=T(\sqrt{n})+\Theta(1): \Theta(\lg \lg n)$ (what base case do we need here?)
- $T(n)=7 T(n / 2)+\Theta\left(n^{3}\right): \Theta\left(n^{3}\right)$
- $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right): T(n)=\Theta\left(n^{\lg 7}\right)$
- $T(n)=4 T(n / 3)+2 n-1$, with $\left(T(1)=T(2)=1: T(n)=\Theta\left(n^{\log _{3} 4}\right)\right.$
- $T(n)=3 T(n / 2)+n^{2}$, with $\left(T(1)=1: T(n)=\Theta\left(n^{2}\right)\right.$
- $T(n)=2 T(n-1)+\Theta(1): T(n)=\Theta\left(2^{n}\right)$ Note: For exponential recurrences we are usually happy with just a lower bound.
- (challenge) $T(n)=T(n / 3)+T(2 n / 3)+\Theta(n)$: talk to us!
- (challenge) $T(n)=T(n / 3)+T(n / 4)+\Theta(n):$ talk to us!
- (challenge) $T(n)=T(n / 2)+T(n / 4)+T(n / 10)+\Theta(n):$ talk to us!

