
Week 3: Lab

Collaboration level 0 (no restrictions). Open notes.

1. Consider the linear-time merge algorithm discussed in the notes and a possible implementation
below. How many element comparisons will the standard merge function take to merge the
following left and right lists ?

left = [1, 3, 4, 5, 6, 7, 8], right = [1, 5, 9, 11, 12, 16]

Merge(left, right)

result = []

i=0

j=0

while i < len(left) and j < len(right):

if left[i] < right[j]:

result.append(left[i])

i = i+1

else:

result.append(right[j])

j = j+1

# add any left overs

while i < len(left):

result.append(left[i])

i = i+1

while j < len(right):

result.append(right[j])

j = j+1

return result

A 8

B 9

C 10

D 13

1



Find a Θ() bound for the following recurrences using iteration.

What we expect: show the process: the first O(1) steps of your iteration leading to the
general formula, the recursion depth, and the final Θ() bound for T (n). Do not write your
answers on this page because there isn’t enough space. Use plenty of space for each problem
and show your work.

2. T (n) = T (n/2) + Θ(1) (assume T (1) = 1).

3. T (n) = T (2n/3) + Θ(1) (assume T (i) = 1 for i = 1, 2).

4. T (n) = T (n− 1) + Θ(1) (assume T (1) = 1).

5. T (n) = T (n− 2) + Θ(1) (assume T (i) = 1 for i = 1, 2).

6. T (n) = T (n/2) + Θ(n) (assume T (1) = 1).

7. T (n) = T (n/3) + Θ(n) (assume T (i) = 1 for i < 3).

8. T (n) = 5T (n/5) + Θ(n) (assume T (i) = 1 for i < 5).

9. T (n) = T (n− 1) + 2n− 3, with (T (1) = 1.

(Hint: you can write this in a simpler form as T (n) = T (n− 1) + Θ(n) .)

10. T (n) = T (
√
n) + 1 (What is the base case here? )

11. T (n) = 7T (n/2) + Θ(n3) (assume T (1) = 1).

12. T (n) = 7T (n/2) + Θ(n2) (assume T (1) = 1).

13. T (n) = 4T (n/3) + 2n− 1, with T (1) = T (2) = 1

(Hint: You can write this in a simpler form as T (n) = 4T (n/3) + Θ(n)).

14. T (n) = 3T (n/2) + Θ(n2), assume T (1) = 1.

2



15. T (n) = 2T (n− 1) + Θ(1), assume T (1) = 1.

16. Based on all examples seen so far, list recurrences that solve to:

(a) Θ(lg n)

(b) Θ(n)

(c) Θ(n lg n)

(d) Θ(n2)

(e) exponenital

For each category, enumerate all recurrences seen so far that fall into that category, and add
at last one new one.

17. Consider the following algorithm to compute n!: :

Mystery(n):

• //Input: a nonnegative integer n

• //Output: the value of n!

• if n==0: return 1

• else: return n× Mystery(n− 1)

Analyze the running time of Mystery(n) (i.e. write a recurrence for its running time and find
its Θ()) .

18. For the algorithm below, give its runtime recurrence and its order of growth.

AlgorithmC(n):

• //We don’t know what this algorithm does.

• Do something that takes O(1)

• AlgorithmC(n/3)

• Do something that takes O(n)

• AlgorithmC(n/3)

3



Optional

Based on your intuition from working through the previous examples, what is a Θ() for T (n) in
the following recurrences?

1. T (n) = T (n/3) + Θ(1) (assume T (i) = 1 for i = 1, 2).

2. T (n) = T (n/10) + Θ(1) (assume T (i) = 1 for i < 10).

3. T (n) = T (99n/100) + Θ(1) (assume T (i) = 1 for i < 100).

4. T (n) = T (n− 3) + Θ(1) (assume T (i) = 1 for i = 1, 2, 3).

5. T (n) = T (n− 2) + Θ(n) (assume T (i) = 1 for i = 1, 2).

6. (challenge) T (n) = T (n/3) + T (2n/3) + Θ(n) (cannot iterate; only guess the solution)

7. (challenge) T (n) = T (n/3) + T (n/4) + Θ(n) (cannot iterate; only guess the solution)

8. (challenge) T (n) = T (n/2) + T (n/4) + T (n/10) + Θ(n) (only guess the solution)

4



Partial Answers

• B (9 comparisons)

• T (n) = T (n/2) + Θ(1) : Θ(lg n).

• T (n) = T (n/3) + Θ(1) (assume T (i) = 1 for i = 1, 2): Θ(lg n)

• T (n) = T (n/10) + Θ(1) (assume T (i) = 1 for i < 10): Θ(lg n)

• T (n) = T (2n/3) + Θ(1) (assume T (i) = 1 for i = 1, 2): Θ(lg n)

• T (n) = T (n− 1) + Θ(1): Θ(n)

• T (n) = T (n− 2) + Θ(1) (assume T (i) = 1 for i = 1, 2): Θ(n)

• T (n) = T (n− 3) + Θ(1) (assume T (i) = 1 for i = 1, 2, 3): Θ(n)

• T (n) = T (n/2) + Θ(n): Θ(n)

• T (n) = T (n/3) + Θ(n) (assume T (i) = 1 for i < 3): Θ(n)

• T (n) = 3T (n/3) + Θ(n) (assume T (i) = 1 for i < 3): Θ(n lg n)

• T (n) = 5T (n/5) + Θ(n) (assume T (i) = 1 for i < 5): Θ(n lg n)

• T (n) = T (n− 1) + Θ(n): Θ(n2)

• T (n) = T (n− 2) + Θ(n) (assume T (i) = 1 for i = 1, 2): Θ(n2)

• T (n) = T (
√
n) + Θ(1): Θ(lg lg n) (what base case do we need here?)

• T (n) = 7T (n/2) + Θ(n3): Θ(n3)

• T (n) = 7T (n/2) + Θ(n2): T (n) = Θ(nlg 7)

• T (n) = 4T (n/3) + 2n− 1, with (T (1) = T (2) = 1: T (n) = Θ(nlog3 4)

• T (n) = 3T (n/2) + n2, with (T (1) = 1: T (n) = Θ(n2)

• T (n) = 2T (n − 1) + Θ(1): T (n) = Θ(2n) Note: For exponential recurrences we are usually
happy with just a lower bound.

• (challenge) T (n) = T (n/3) + T (2n/3) + Θ(n): talk to us!

• (challenge) T (n) = T (n/3) + T (n/4) + Θ(n) : talk to us!

• (challenge) T (n) = T (n/2) + T (n/4) + T (n/10) + Θ(n) : talk to us!

5


