
Week 9: Lab
Module 4: Techniques

Collaboration level 0 (no restrictions). Open notes.

1. Knapsack: Consider the knapsack problem discussed in class: We have a backpack of ca-
pacity W and a set of n items, each item with weight wi and value vi. We denote by K(i, w)
the maximal value for packing a backpack of capacity w with a subset of items 1 through
i. Consider the top-down recursive DP algorithm with memoization which fills in the table
table[0..W ][0..n]:

optknapsackDP(i, x)

1 // RETURNs the max value to pack a knapsack of capacity x using items 1 through i.
2 // Assume global variables: table[1..n][1..W ] initialized to −1. Also global v[1..n] and w[1..n].
3 if (x == 0): return 0
4 if (i ≤ 0): return 0
5 IF (table[i][x] 6= −1): RETURN table[i][x]
6 IF w[i] ≤ x: with = v[i]+ optknapsackDP(i− 1, x− w[i])
7 ELSE: with = 0
8 without = optknapsackDP(i− 1, x)
9 table[i][x] = max { with, without }

10 RETURN table[i][x]

Assume we have a backpack of capacity W = 3, and three items (n = 3): a hat of weight 1
and value 1, a ball of weight 2 and value 4, and a bottle of water of weight 3 and value 6.

(a) Draw the tree of recursive calls triggered by optknapsackDP (3, 3) (with (3, 3) at the root
and an edge from a to b if a generates a recursive call to b).

(b) Map this recursion tree on the table below.

(c) Follow the recursion and calculate the values that will be stored in the table. Only show
the values that are actually filled in. Which entries in the table will stay at their initial value
(i.e. not filled in) ?

(d) Number the entries in the table that are filled in by the recursion in the order in which
they are filled in.

(e) Assemble the full solution for optknapsackDP (3, 3), and list the entries that you will you
visit.
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2. Pharmacist problem: A pharmacist has W pills and n empty bottles. Bottle i can hold
pi pills and has an associated cost ci. Given W , {p1, p2, ..., pn} and {c1, c2, ..., cn}, you want
to store all pills using a set of bottles in such a way that the total cost of the bottles is
minimized. So the problem is to find the minimum cost for storing the W pills and what
bottles to use. Note: If you use a bottle you have to pay for its cost no matter if you fill it to
capacity or not.

(a) Explain how the problem has optimal substructure.

Answer: Consider an optimal solution O, and consider one of the bottles in it. Let’s say
this is bottle k, and it holds pk pills. Then we know that the remaining bottles in O
must be the optimal way to store .....................................

(b) Define a subproblem and give a recursive formulation.

(c) Give pseudocode for a top-down recursive dynamic programming algorithm with mem-
oization and analyze its running time.

3. Greedy pharmacist? Someone proposes the following greedy strategy to solve the phar-
macist problem (above): Pick the bottle with the smallest cost-per-pill, and recurse on the
remaining pills with the remaining bottles. Show that this greedy strategy is not correct by
giving a counterexample.

4. The skis and skiers problem1: You’ve decided to become a ski bum, and hooked up with
Sugarloaf Ski Resort. They’ll let you ski for free all winter, in exchange for helping their ski
rental shop with an algorithm to assign skis to skiers.

Ideally, each skier should obtain a pair of skis whose height matches his or her own height
exactly. Unfortunately, this is generally not possible. We define the disparity between a skier
and his/her skis as the absolute value of the difference between the height of the skier and
the height of the skis. The objective is to find an assignment of skis to skiers that minimizes
the sum of the disparities.

(a) First, let’s assume that there are n skiers and n skis. Consider the following algorithm:
consider all possible assignments of skis to skiers; for each one, compute the sum of the
disparities; select the one that minimizes the total disparity. How much time would this
algorithm take on a 1GHz computer, if there were 50 skiers and 50 skis?

(b) One day, while waiting for the lift, you make an interesting discovery: if we have a short
person and a tall person, it would never be better to give to the shorter person a taller
pair of skis than were given to the taller person. Follow the proof below and fill in the
missing parts:

Proof: Let P1, P2 be the length of two skiers, and S1, S2 the lengths of the skis. We
assume P1 < P2 and S1 < S2. We’ll prove that pairing P1 with S1 and P2 with S2
is better than pairing P1 with S2 and P2 with S1. Basically we’d like to show that
|P1−S1|+ |P2−S2| ≤ |P1−S2|+ |P2−S1|. To do so we’ll consider all possible cases:

• P1 < S1 < P2 < S2:
Draw this case and show graphically that (S1 − P1) + (S2 − P2) ≤ (S2 − P1) +
(P2− S1)

All the other cases can be shown in a similar way (you don’t need to do it).

• P1 < S1 < S2 < P2:

1Adapted from Harvey Mudd College.
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• P1 < P2 < S1 < S2:

• S1 < P1 < P2 < S2:

• S1 < P1 < S2 < P2:

• S1 < S2 < P1 < P2:

(c) Consider the general case where there are m skiers and n pairs of skis (and n ≥ m).

Hint: Sort the skiers and skis by increasing height. Let hi denote the height of the ith
skier in sorted order, and sj denote the height of the jth pair of skis in sorted order.
Let OptSkis(i, j) be the optimal cost (disparity) for matching the first i skiers with skis
from the set {1, 2, ..., j}.
The solution we seek is simply OptSkis(m,n).

Define OptSkis(i, j) recursively. What is the running time of OptSkis(m,n)?

(d) Memo-ize the recursive formulation above. What does the running time of OptSkis(m,n)
become?
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