LCS (longest common subsequence) summary

- Given two arrays $X[1 . . n]$ and $Y[1 . . m]$, find their longest common subsequence.
- Choice of subproblem: Denote by $c(i, j)$ the length of the LCS of X_{i} and Y_{j}, where X_{i} is the array consisting of the first i elements of X, and Y_{j} is the array consisting of the first j elements of Y. To find the LCS of X and Y we call $c(n, m)$
- Recursive definition of
//returns the length of the LCS of the first i elements of X and the first j elements of Y
IF ($i==0$ or $j==0$): return 0
else
IF $X[i]==Y[j]$: return $1+c(i-1, j-1)$
Else: return $\max \{c(i-1, j), c(i, j-1)\}$
- Correctness: It tries all possibilities.
- Dynamic programming solution, top-down with memoization: We create table[0..n][0..m], where table $[i][j]$ will store the result of $c(i, j)$. We initialize all entries in the table as 0 and call cwith $D P(n, m)$.

```
cwithDP(i,j)
```

//returns the length of the LCS of the first i elements of X and the first j elements of Y

$$
\text { IF }(i==0 \text { or } j==0): \text { return } 0
$$

else
IF (table $[i][j] \neq 0$): RETURN table $[i][j]$
IF $X[i]==Y[j]$: answer $1+\operatorname{cwithDP}(i-1, j-1)$
Else: answer $=\max \{\operatorname{cwithDP}(i-1, j), \operatorname{cwithDP}(i, j-1)\}$
table $[x]=$ answer
return answer
Running time: $O(m \cdot n)$

- Dynamic programming, bottom-up:
- Computing full solution:

