
LCS (longest common subsequence) summary

• Given two arrays X[1..n] and Y [1..m], find their longest common subsequence.

• Choice of subproblem: Denote by c(i, j) the length of the LCS of Xi and Yj , where Xi is
the array consisting of the first i elements of X, and Yj is the array consisting of the first j
elements of Y . To find the LCS of X and Y we call c(n,m)

• Recursive definition of

c(i, j)
//returns the length of the LCS of the first i elements of X and the first j elements of Y

IF (i == 0 or j == 0): return 0

else

IF X[i] == Y [j]: return 1 + c(i− 1, j − 1)

Else: return max{c(i− 1, j), c(i, j − 1)}

• Correctness: It tries all possibilities.

• Dynamic programming solution, top-down with memoization: We create table[0..n][0..m],
where table[i][j] will store the result of c(i, j). We initialize all entries in the table as 0 and
call cwithDP (n,m).

cwithDP(i, j)
//returns the length of the LCS of the first i elements of X and the first j elements of Y

IF (i == 0 or j == 0): return 0

else

IF (table[i][j] 6= 0): RETURN table[i][j]

IF X[i] == Y [j]: answer 1 + cwithDP(i− 1, j − 1)

Else: answer= max{cwithDP(i− 1, j), cwithDP(i, j − 1)}
table[x] = answer

return answer

Running time: O(m · n)

• Dynamic programming, bottom-up:

• Computing full solution:

1


